To be continued

Variational Algorithms

  1. Basic idea
  2. Building block
    • Cost function
    • Ansatzes
    • Optimizers

1. Reference

1.1.1. Review

  1. Cerezo, Marco, et al. "Variational quantum algorithms." Nature Reviews Physics 3.9 (2021): 625-644. arXiv:2012.09265
  2. McClean, Jarrod R., et al. "The theory of variational hybrid quantum-classical algorithms." New Journal of Physics 18.2 (2016): 023023. arXiv:1509.04279

1.1.2. Barren plateaus

  1. McClean, Jarrod R., et al. "Barren plateaus in quantum neural network training landscapes." Nature communications 9.1 (2018): 1-6. arXiv:1803.11173
  2. Marrero, Carlos Ortiz, Mária Kieferová, and Nathan Wiebe. "Entanglement-induced barren plateaus." PRX Quantum 2.4 (2021): 040316. arXiv:2010.15968
  3. Wang, Samson, et al. "Noise-induced barren plateaus in variational quantum algorithms." Nature communications 12.1 (2021): 1-11. arXiv:2007.14384

1.1.3. others

  1. Bittel, Lennart, and Martin Kliesch. "Training variational quantum algorithms is np-hard." Physical Review Letters 127.12 (2021): 120502. arXiv:2101.07267
  2. Lyu, Chufan, et al. "Symmetry enhanced variational quantum eigensolver." (2022). arXiv:2203.02444

2. Basic idea

  1. The cost function you select depends on your task
  2. Design short-depth quantum circuit to calculate your cost function
  3. Parameterized gate sequence to formulate Ansatz
  4. Choose a classical optimizer to design the training algorithm

To be continued

results matching ""

    No results matching ""