To be continued
Variational Algorithms
- Basic idea
- Building block
- Cost function
- Ansatzes
- Optimizers
1. Reference
1.1.1. Review
- Cerezo, Marco, et al. "Variational quantum algorithms." Nature Reviews Physics 3.9 (2021): 625-644. arXiv:2012.09265
- McClean, Jarrod R., et al. "The theory of variational hybrid quantum-classical algorithms." New Journal of Physics 18.2 (2016): 023023. arXiv:1509.04279
1.1.2. Barren plateaus
- McClean, Jarrod R., et al. "Barren plateaus in quantum neural network training landscapes." Nature communications 9.1 (2018): 1-6. arXiv:1803.11173
- Marrero, Carlos Ortiz, Mária Kieferová, and Nathan Wiebe. "Entanglement-induced barren plateaus." PRX Quantum 2.4 (2021): 040316. arXiv:2010.15968
- Wang, Samson, et al. "Noise-induced barren plateaus in variational quantum algorithms." Nature communications 12.1 (2021): 1-11. arXiv:2007.14384
1.1.3. others
- Bittel, Lennart, and Martin Kliesch. "Training variational quantum algorithms is np-hard." Physical Review Letters 127.12 (2021): 120502. arXiv:2101.07267
- Lyu, Chufan, et al. "Symmetry enhanced variational quantum eigensolver." (2022). arXiv:2203.02444
2. Basic idea
- The cost function you select depends on your task
- Design short-depth quantum circuit to calculate your cost function
- Parameterized gate sequence to formulate Ansatz
- Choose a classical optimizer to design the training algorithm
To be continued