Quantum walk

2022 Feb 23 in NTHU

Outline

  1. Basic concepts of Quantum walk
  2. Power of Quantum walk
  3. Meet Physics

1. Reference

1.1.1. Basic concepts

  1. Quantum Walks and Search Algorithms 2013 Renato Portugal
  2. Quantum Walks and Quantum Computation 2013 Katharine Elizabeth Barr

1.1.2. The Power of Quantum walk

Quantum Walk Search

  • Spatial search by quantum walk 2004 Andrew M. Childs
  • Spatial search by quantum walk is optimal for almost all graphs 2015 arXiv:1508.01327
  • A Unified Framework of Quantum Walk Search 2019

    Universal computation

  • Universal computation by quantum walk 2009

1.1.3. Meet Physics

Topological phase

  • Takuya Kitagawa

    1. Exploring Topological Phases With Quantum Walks 2010 arxiv.1003.1729
    2. Topological phenomena in quantum walks; elementary introduction to the physics of topological phases arXiv:1112.1882
    3. Observation of topologically protected bound states in photonic quantum walks 2012
      • Experimental

    spin glass

  • Finding spin glass ground states using quantum walks 2019 arxiv.1903.05003

2. Basic concepts

2.1. example

The Hilbert space of the system is H=HCHP H = H _{C} \otimes H _{P} where

  • HCH _{C} is the two-dimensional Hilbert space associated with the "coin," whose computational basis is {0,1}\{|0\rangle,|1\rangle\}. We can now define the "coin" as any unitary matrix CC with dimension 2 , which acts on vectors in Hilbert space HC.CH _{C} . C is called coin operator.
  • the position of the walker is described by n|n\rangle

The shift from n|n\rangle to n+1|n+1\rangle or n1|n-1\rangle must be described by a unitary operator, called the shift operator SS. It acts as follows: S0n=0n+1S1n=1n1 \begin{array}{l} S|0\rangle|n\rangle=|0\rangle|n+1\rangle \\ S|1\rangle|n\rangle=|1\rangle|n-1\rangle \end{array} If we know the action of SS on the computational basis of HH, we have a complete description of this linear operator, and we obtain S=00n=n+1n+11n=n1n. S=|0\rangle \langle 0 |\otimes \sum_{n=-\infty}^{\infty} | n+1 \rangle\langle n|+| 1\rangle \langle 1|\otimes \sum_{n=-\infty}^{\infty}| n-1\rangle\langle n| . Consider the particle initially located at the origin n=0|n=0\rangle and the coin state with spin up 0|0\rangle, that is, ψ(0)=0n=0 |\psi(0)\rangle=|0\rangle|n=0\rangle where

  • ψ(0)|\psi(0)\rangle denotes the state of the quantum walk at t=0t=0 and ψ(t)|\psi(t)\rangle denotes the state at time tt.

The most used coin is the Hadamard operator H=12[1111] H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right] One step consists of applying HH to the coin state followed by the shift operator SS, in the following way: 00HI0+120S12(01+11). \begin{aligned} |0\rangle \otimes|0\rangle & \stackrel{H \otimes I}{\longrightarrow} \frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes|0\rangle \\ & \stackrel{S}{\longrightarrow} \frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle+|1\rangle \otimes|-1\rangle) . \end{aligned} After the first step, the position of the particle is a superposition of n=1n=1 and n=1n=-1.

The quantum walk dynamics are driven by the unitary operator U=S(HI) U=S(H \otimes I) with no intermediary measurements. One step consists in applying UU one time, which is equivalent to applying the coin operator followed by the shift operator.

In the next step, we apply UU again without measurements. After tt steps, the state of the quantum walk is given by ψ(t)=Utψ(0) |\psi(t)\rangle=U^{t}|\psi(0)\rangle The steps ψ(0)=0n=0ψ(1)=U1ψ(0)=12(11+01)ψ(2)=U2ψ(0)=12(12+(0+1)0+02)ψ(3)=U3ψ(0)=122(1301+(20+1)1+03) \begin{aligned} |\psi(0)\rangle=&|0\rangle|n=0\rangle \\ |\psi(1)\rangle=&U^{1}|\psi(0)\rangle\\ =&\frac{1}{\sqrt{2}}(|1\rangle|-1\rangle+|0\rangle|1\rangle) \\ |\psi(2)\rangle=&U^{2}|\psi(0)\rangle\\ =&\frac{1}{2}(-|1\rangle|-2\rangle+(|0\rangle+|1\rangle)|0\rangle+|0\rangle|2\rangle)\\ |\psi(3)\rangle=&U^{3}|\psi(0)\rangle\\ =&\frac{1}{2 \sqrt{2}}(|1\rangle|-3\rangle-|0\rangle|-1\rangle+(2|0\rangle+|1\rangle)|1\rangle+|0\rangle|3\rangle) \end{aligned} We have used an unbiased coin, but the state ψ(3)|\psi(3)\rangle is not symmetric

numerical calculate for large steps

the probability distribution corresponding to the walker's position

change the initial condition ψ(0)=0n=0ψ(0)=0i12n=0 |\psi(0)\rangle=|0\rangle|n=0\rangle \longrightarrow |\psi(0)\rangle=\frac{|0\rangle- i |1\rangle}{\sqrt{2}}|n=0\rangle the state become symmetric

compare to classical random walk (Binomial distribution)

If nn is large enough, a reasonable approximation to B(n,p)B(n, p) is given by the normal distribution N(np,np(1p)) N (n p, n p(1-p)) Standard deviation of

  • the quantum walk (crosses) σ(t)=0.54tt\sigma(t)=0.54 t \propto t
  • the classical random walk (circles) σ(t)=t\sigma(t)=\sqrt{t}

2.2. Structure

  1. Finite Two-Dimensional Lattices
  2. Hypercubes
  3. Graphs
    • Regular
    • Arbitrary

  1. Coined Walks with Cyclic Boundary Conditions

2.3. Infinite Lattices

The full Hilbert space associated with the quantum walk HCHP H _{C} \otimes H _{P} where

  • computational basis is {j,x:j{0,1}:xZ}\{|j, x\rangle: j \in\{0,1\}: x \in Z \}

The state of the walker at time tt is described by Ψ(t)=j=01x=ψj,x(t)j,x |\Psi(t)\rangle=\sum_{j=0}^{1} \sum_{x=-\infty}^{\infty} \psi_{j, x}(t)|j, x\rangle where

  • the coefficients ψj,x(t)\psi_{j, x}(t) are complex functions, called probability amplitudes,
  • the probability distribution of a position measurement at the time step tt

px(t)=ψ0,x(t)2+ψ1,x(t)2 p_{x}(t)=\left|\psi_{0, x}(t)\right|^{2}+\left|\psi_{1, x}(t)\right|^{2}

The shift operator is S=j=01x=j,x+(1)jj,x S=\sum_{j=0}^{1} \sum_{x=-\infty}^{\infty}\left|j, x+(-1)^{j}\right\rangle\langle j, x| Let us use the Hadamard coin H=12[1111] H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right] Applying the evolution operator of the coined model U=S(HI) U=S(H \otimes I) to state Ψ(t)|\Psi(t)\rangle, we obtain Ψ(t+1)=x=S(ψ0,x(t)H0x+ψ1,x(t)H1x)=x=ψ0,x(t)+ψ1,x(t)2S0x+ψ0,x(t)ψ1,x(t)2S1x=x=ψ0,x(t)+ψ1,x(t)20x+1+ψ0,x(t)ψ1,x(t)21x1 \begin{aligned} |\Psi(t+1)\rangle &=\sum_{x=-\infty}^{\infty} S\left(\psi_{0, x}(t) H|0\rangle|x\rangle+\psi_{1, x}(t) H|1\rangle|x\rangle\right) \\ &=\sum_{x=-\infty}^{\infty} \frac{\psi_{0, x}(t)+\psi_{1, x}(t)}{\sqrt{2}} S|0\rangle|x\rangle+\frac{\psi_{0, x}(t)-\psi_{1, x}(t)}{\sqrt{2}} S|1\rangle|x\rangle \\ &=\sum_{x=-\infty}^{\infty} \frac{\psi_{0, x}(t)+\psi_{1, x}(t)}{\sqrt{2}}|0\rangle|x+1\rangle \\ &\qquad+\frac{\psi_{0, x}(t)-\psi_{1, x}(t)}{\sqrt{2}}|1\rangle|x-1\rangle \end{aligned} corresponding coefficients on the right-hand side to obtain the walker's evolution equations ψ0,x(t+1)=ψ0,x1(t)+ψ1,x1(t)2ψ1,x(t+1)=ψ0,x+1(t)ψ1,x+1(t)2 \begin{array}{l} \psi_{0, x}(t+1)=\frac{\psi_{0, x-1}(t)+\psi_{1, x-1}(t)}{\sqrt{2}} \\ \psi_{1, x}(t+1)=\frac{\psi_{0, x+1}(t)-\psi_{1, x+1}(t)}{\sqrt{2}} \end{array}

2.3.1. The Fourier transform

The Fourier transform of a discrete function f:ZCf: Z \rightarrow C is a continuous function f~:[π,π]C\tilde{f}:[-\pi, \pi] \rightarrow C defined by f~(k)=x=eikxf(x) \tilde{f}(k)=\sum_{x=-\infty}^{\infty} e ^{- i k x} f(x) The Fourier transform of the coefficients ψj,x(t)\psi_{j, x}(t) is ψ~j(k,t)=x=eikxψj,x(t) \widetilde{\psi}_{j}(k, t)=\sum_{x=-\infty}^{\infty} e ^{- i k x} \psi_{j, x}(t) There is another way to use the Fourier transform. k~=limL12L+1x=LLeikxx |\tilde{k}\rangle=\lim _{L \rightarrow \infty} \frac{1}{\sqrt{2 L+1}} \sum_{x=-L}^{L} e ^{ i k x}|x\rangle Fourier transform defines a new orthonormal basis {jk~:j{0,1},πkπ} \{|j\rangle|\tilde{k}\rangle: j \in\{0,1\},-\pi \leq k \leq \pi\} called (extended) Fourier basis. In this basis, we can express the state of the quantum walk as Ψ(t)=j=01ππψ~j(k,t)jk~dk2π |\Psi(t)\rangle=\sum_{j=0}^{1} \int_{-\pi}^{\pi} \widetilde{\psi}_{j}(k, t)|j\rangle|\tilde{k}\rangle \frac{ d k}{2 \pi} the action of the shift operator on the new basis, Sjk~=x=eikxSj,x=x=eikxjx+(1)j \begin{aligned} S|j\rangle|\tilde{k}\rangle &=\sum_{x=-\infty}^{\infty} e ^{ i k x} S|j, x\rangle \\ &=\sum_{x=-\infty}^{\infty} e ^{ i k x}|j\rangle\left|x+(-1)^{j}\right\rangle \end{aligned} Renaming index xx so that x=x+(1)jx^{\prime}=x+(-1)^{j}, Sjk~=x=eik(x(1)j)jx=eik(1)jjk~. \begin{aligned} S|j\rangle|\tilde{k}\rangle &=\sum_{x^{\prime}=-\infty}^{\infty} e ^{ i k\left(x^{\prime}-(-1)^{j}\right)}|j\rangle\left|x^{\prime}\right\rangle \\ &= e ^{- i k(-1)^{j}}|j\rangle|\tilde{k}\rangle . \end{aligned} The result shows that the action of the shift operator SS on a state of the Fourier basis only changes its phase,

  • jk~|j\rangle|\tilde{k}\rangle is an eigenvector associated with the eigenvalue eik(1)je ^{- i k(-1)^{j}}.

2.3.2. eigen-problem of evolution operator

The next task is to find the eigenvectors of the evolution operator UU. If we diagonalize UU, we will be able to find an analytic expression for the state of the quantum walk as a function of time.

Applying UU to vector jk~\left|j^{\prime}\right\rangle|\tilde{k}\rangle

Ujk=S(j=01Hj,jjk~)=j=01eik(1)jHj,jjk~ \begin{aligned} U\left|j^{\prime}\right\rangle|{k}\rangle &=S\left(\sum_{j=0}^{1} H_{j, j^{\prime}}|j\rangle|\tilde{k}\rangle\right) \\ &=\sum_{j=0}^{1} e ^{- i k(-1)^{j}} H_{j, j^{\prime}}|j\rangle|\tilde{k}\rangle \end{aligned} The entries of UU in the Fourier basis are j,k~Uj,k~=eik(1)jHj,jδk,k. \left\langle j, \tilde{k}|U| j^{\prime}, \tilde{k}^{\prime}\right\rangle= e ^{- i k(-1)^{j}} H_{j, j^{\prime}} \delta_{k, k^{\prime}} . For each kk, we define operator H~k\widetilde{H}_{k}, whose entries are H~j,j=eik(1)jHj,j \widetilde{H}_{j, j^{\prime}}= e ^{- i k(-1)^{j}} H_{j, j^{\prime}} In the matrix form, we have H~k=[eik00eik]H=12[eikeikeikeik] \begin{aligned} \tilde{H}_{k} &=\left[\begin{array}{cc} e ^{- i k} & 0 \\ 0 & e ^{ i k} \end{array}\right] \cdot H \\ &=\frac{1}{\sqrt{2}}\left[\begin{array}{ll} e ^{- i k} & e ^{- i k} \\ e ^{ i k} & - e ^{ i k} \end{array}\right] \end{aligned} The action of the shift operator SS has been absorbed by H~k\widetilde{H}_{k} when UU acts on jk~|j\rangle|\tilde{k}\rangle. If αk\left|\alpha_{k}\right\rangle is an eigenvector of H~k\widetilde{H}_{k} with eigenvalue αk\alpha_{k}, we have Uαkk~=(H~kαk)k~=αkαkk~. \begin{aligned} U\left|\alpha_{k}\right\rangle|\tilde{k}\rangle &=\left(\widetilde{H}_{k}\left|\alpha_{k}\right\rangle\right)|\tilde{k}\rangle \\ &=\alpha_{k}\left|\alpha_{k}\right\rangle|\tilde{k}\rangle . \end{aligned} Therefore, αkk~\left|\alpha_{k}\right\rangle|\tilde{k}\rangle is an eigenvector of UU associated with the eigenvalue αk\alpha_{k}.

This result shows that the diagonalization of the evolution operator reduces to the diagonalization of H~k.\widetilde{H}_{k} .

  • U U acts on an infinite-dimensional Hilbert space,
  • while H~k\widetilde{H}_{k} acts on a two-dimensional space.

The characteristic polynomial of H~k\widetilde{H}_{k} is pH~k(λ)=λ2+i2λsink1. p_{\widetilde{H}_{k}}(\lambda)=\lambda^{2}+ i \sqrt{2} \lambda \sin k-1 . The eigenvalues are the solutions of pH~k(λ)=0p_{\widetilde{H}_{k}}(\lambda)=0, which are αk=eiωkβk=ei(π+ωk) \begin{aligned} \alpha_{k} &= e ^{- i \omega_{k}} \\ \beta_{k} &= e ^{ i \left(\pi+\omega_{k}\right)} \end{aligned} where ωk\omega_{k} is an angle in the interval [π/2,π/2][-\pi / 2, \pi / 2] that satisfies the equation sinωk=12sink.\sin \omega_{k}=\frac{1}{\sqrt{2}} \sin k .

The normalized eigenvectors are αk=1c[eik2eiωkeik] \left|\alpha_{k}\right\rangle=\frac{1}{\sqrt{c^{-}}}\left[\begin{array}{c} e ^{- i k} \\ \sqrt{2} e ^{- i \omega_{k}}- e ^{- i k} \end{array}\right]

βk=1c+[eik2eiωkeik] \left|\beta_{k}\right\rangle=\frac{1}{\sqrt{c^{+}}}\left[\begin{array}{c} e ^{- i k} \\ \left.-\sqrt{2} e ^{ i \omega_{k}}- e ^{- i k}\right. \end{array}\right]

where c±=2(1+cos2k)±2cosk1+cos2k c^{\pm}=2\left(1+\cos ^{2} k\right) \pm 2 \cos k \sqrt{1+\cos ^{2} k} The spectral decomposition of UU is U=ππ(eiωkαk,k~αk,k~+ei(π+ωk)βk,k~βk,k~)dk2π U=\int_{-\pi}^{\pi}\left( e ^{- i \omega_{k}}\left|\alpha_{k}, \tilde{k}\right\rangle\left\langle\alpha_{k}, \tilde{k}\left|+ e ^{ i \left(\pi+\omega_{k}\right)}\right| \beta_{k}, \tilde{k}\right\rangle\left\langle\beta_{k}, \tilde{k}\right|\right) \frac{ d k}{2 \pi} The tt th power of UU is Ut=ππ(eiωktαk,k~αk,k~+ei(π+ωk)tβk,k~βk,k~)dk2π U^{t}=\int_{-\pi}^{\pi}\left( e ^{- i \omega_{k} t}\left|\alpha_{k}, \tilde{k}\right\rangle\left\langle\alpha_{k}, \tilde{k}\left|+ e ^{ i \left(\pi+\omega_{k}\right) t}\right| \beta_{k}, \tilde{k}\right\rangle\left\langle\beta_{k}, \tilde{k}\right|\right) \frac{ d k}{2 \pi} because a function applied to UU is by definition applied directly to the eigenvalues when UU is written in its eigenbasis. In this case, the function is f(x)=xtf(x)=x^{t}

2.3.3. Analytic Solution

Suppose that initially the walker is at the origin x=0x=0 and the coin state is 0|0\rangle. The initial condition is ψ(0)=0x=0. |\psi(0)\rangle=|0\rangle|x=0\rangle . we obtain ψ(t)=Utψ(0)=ππ(eiωktαk,k~αk,k~0,0+ei(π+ωk)tβk,k~βk,k~0,0)dk2π \begin{aligned} |\psi(t)\rangle=& U^{t}|\psi(0)\rangle \\ =& \int_{-\pi}^{\pi}\left( e ^{- i \omega_{k} t}\left|\alpha_{k}, \tilde{k}\right\rangle\left\langle\alpha_{k}, \tilde{k} \mid 0,0\right\rangle\right.\\ &\left.+ e ^{ i \left(\pi+\omega_{k}\right) t}\left|\beta_{k}, \tilde{k}\right\rangle\left\langle\beta_{k}, \tilde{k} \mid 0,0\right\rangle\right) \frac{ d k}{2 \pi} \end{aligned} Using αk=1c[eik2eiωkeik]\left|\alpha_{k}\right\rangle=\frac{1}{\sqrt{c^{-}}}\left[\begin{array}{c} e ^{- i k} \\ \sqrt{2} e ^{- i \omega_{k}}- e ^{- i k}\end{array}\right], βk=1c+[eik2eiωkeik]\left|\beta_{k}\right\rangle=\frac{1}{\sqrt{c^{+}}}\left[\begin{array}{c} e ^{- i k} \\ -\sqrt{2} e ^{ i \omega_{k}}- e ^{- i k}\end{array}\right] we obtain αk,k~0,0=eikcβk,k~0,0=eikc+ \begin{aligned} \left\langle\alpha_{k}, \tilde{k} \mid 0,0\right\rangle &=\frac{ e ^{ i k}}{\sqrt{c^{-}}} \\ \left\langle\beta_{k}, \tilde{k} \mid 0,0\right\rangle &=\frac{ e ^{ i k}}{\sqrt{c^{+}}} \end{aligned} Then, ψ(t)=ππ(ei(ωktk)cαk+ei(π+ωk)t+ikc+βk)k~dk2π |\psi(t)\rangle=\int_{-\pi}^{\pi}\left(\frac{ e ^{- i \left(\omega_{k} t-k\right)}}{\sqrt{c^{-}}}\left|\alpha_{k}\right\rangle+\frac{ e ^{ i \left(\pi+\omega_{k}\right) t+ i k}}{\sqrt{c^{+}}}\left|\beta_{k}\right\rangle\right)|\tilde{k}\rangle \frac{ d k}{2 \pi}

Probability distribution of the quantum walk on the line after 100 steps obtained from the analytic expressions ψ0,x(t)=ππ(1+cosk1+cos2k)ei(ωktkx)dk2πψ1,x(t)=ππeik1+cos2kei(ωktkx)dk2π \begin{array}{l} \psi_{0, x}(t)=\int_{-\pi}^{\pi}\left(1+\frac{\cos k}{\sqrt{1+\cos ^{2} k}}\right) e ^{- i \left(\omega_{k} t-k x\right)} \frac{ d k}{2 \pi} \\ \psi_{1, x}(t)=\int_{-\pi}^{\pi} \frac{ e ^{ i k}}{\sqrt{1+\cos ^{2} k}} e ^{- i \left(\omega_{k} t-k x\right)} \frac{ d k}{2 \pi} \end{array}

3. Power of Quantum walk

Spatial search

  1. Spatial search by quantum walk 2004 Andrew M. Childs arXiv:quant-ph/0306054
  2. Spatial search by quantum walk is optimal for almost all graphs 2015 arXiv:1508.01327

Universal computation

  1. Universal computation by quantum walk 2009

the spatial search problem, which aims to find one or more marked points in a finite physical region that can be modeled by a graph

Consider a graph Γ\Gamma, where

  • V(Γ)V(\Gamma) is the set of vertices
  • V(Γ)=N|V(\Gamma)|=N.

Let HNH ^{N} be the NN-dimensional Hilbert space associated with the graph, that is, the computational basis of HNH ^{N} is {v:0vN1} \{|v\rangle: 0 \leq v \leq N-1\} Let MM be the set of marked vertices. Then, the unitary operator we need is R=I2vMvv R=I-2 \sum_{v \in M}|v\rangle\langle v| The next step is to build an evolution operator UU associated with the graph.

modified evolution operator

The evolution operator UU^{\prime} of a quantum-walk-based search algorithm is U=UR U^{\prime}=U R where

  • UU^{\prime} is called modified evolution operator to distinguish from UU.

  • UU is the standard evolution operator of a quantum walk on the graph with no marked vertex

  • RR is the unitary operator that inverts the sign of the marked vertex

In this context

  • the walker starts at an initial state ψ(0)|\psi(0)\rangle
  • and evolves driven by UU^{\prime}
  • that is, the walker's state after tt steps is ψ(t)=(U)tψ(0)|\psi(t)\rangle=\left(U^{\prime}\right)^{t}|\psi(0)\rangle.

eigenvalue and eigenvectors of the modified evolution operator UU^{\prime}.

Uλ=exp(iλ)λ U^{\prime}|\lambda\rangle=\exp ( i \lambda)|\lambda\rangle where

  • Let exp(iλ1),\exp \left( i \lambda_{1}\right), \ldots, exp(iλk)\exp \left( i \lambda_{k}\right) be the eigenvalues UU^{\prime} such that λ1,,λk[π,π].\lambda_{1}, \ldots, \lambda_{k} \in[-\pi, \pi] .
  1. Select the smallest positive element of the set {λ1,,λk}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}. Let us call this smallest element by λ\lambda and the unit eigenvector by λ|\lambda\rangle, that is λλ=1\langle\lambda \mid \lambda\rangle=1.
  2. Select the largest negative element of the set {λ1,,λk}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}. Let us call this largest negative element by λ\lambda^{\prime} and the unit eigenvector by λ\left|\lambda^{\prime}\right\rangle,

In most spatial search algorithms λ=λ \lambda^{\prime}=-\lambda vectors λ|\lambda\rangle and λ\left|\lambda^{\prime}\right\rangle are the only eigenvectors of UU^{\prime}

  1. f the graph on which the quantum walk takes place is simple enough, such as the complete graph, we can calculate λ\lambda and λ\lambda^{\prime} without much effort.
  2. For an arbitrary graph, we describe a technique we call principal eigenvalue technique, which allows to find λ\lambda and λ\lambda^{\prime}.

3.2. complexity analysis

The complexity analysis of the spatial search algorithm is based on two quantities:

  • The running time toptt_{ opt }
  • the success probability p(topt)p\left(t_{ opt }\right)

The expression of the probability of finding the marked vertex 0 after tt steps is p(t)=0ψ(t)2 p(t)=|\langle 0 \mid \psi(t)\rangle|^{2} Since ψ(t)=|\psi(t)\rangle= (U)tψ(0)\left(U^{\prime}\right)^{t}|\psi(0)\rangle, we have p(t)=0(U)tψ(0)2 p(t)=\left|\left\langle 0\left|\left(U^{\prime}\right)^{t}\right| \psi(0)\right\rangle\right|^{2}

The goal now is to determine the optimal number of steps topt t_{\text {opt }}, which is the one that maximizes p(t)p(t).

The spectral decomposition of UU^{\prime} would be U=eiλλλ+eiλλλ+Utiny  U^{\prime}= e ^{ i \lambda}|\lambda\rangle\left\langle\lambda\left|+ e ^{ i \lambda^{\prime}}\right| \lambda^{\prime}\right\rangle\left\langle\lambda^{\prime}\right|+U_{\text {tiny }} where Utiny U_{\text {tiny }} acts nontrivially only on the subspace orthogonal to the plane spanned by {λ,λ}\left\{|\lambda\rangle,\left|\lambda^{\prime}\right\rangle\right\}. After raising the previous equation to power tt we obtain (U)t=eiλtλλ+eiλtλλ+Utiny t \left(U^{\prime}\right)^{t}= e ^{ i \lambda t}|\lambda\rangle \langle\lambda|+ e ^{ i \lambda^{\prime} t} | \lambda^{\prime} \rangle\left\langle\lambda^{\prime}\right|+U_{\text {tiny }}^{t} the probability p(t)=eiλt0λλψ(0)+eiλt0λλψ(0)+ϵ2 p(t)=\left| e ^{ i \lambda t}\langle 0 \mid \lambda\rangle\langle\lambda \mid \psi(0)\rangle+ e ^{ i \lambda^{\prime} t}\left\langle 0 \mid \lambda^{\prime}\right\rangle\left\langle\lambda^{\prime} \mid \psi(0)\right\rangle+\epsilon\right|^{2} where

  • ϵ=0Utiny tψ(0)\epsilon=\left\langle 0\left|U_{\text {tiny }}^{t}\right| \psi(0)\right\rangle From now on we will disregard ϵ\epsilon

We need to find λ,λ\lambda, \lambda^{\prime}, the inner products 0λ,λψ(0)\langle 0 \mid \lambda\rangle,\langle\lambda \mid \psi(0)\rangle, and their primed versions.

We skip some procedures and directly get the equation ϕk=00ψk2sinλ1cosλ+ϕk00ψk2sin(λϕk)1cos(λϕk)=0ABλCλ2=O(λ3) \begin{aligned} \sum_{\phi_{k}=0}\left|\left\langle 0 \mid \psi_{k}\right\rangle\right|^{2} \frac{\sin \lambda}{1-\cos \lambda}+\sum_{\phi_{k} \neq 0}\left|\left\langle 0 \mid \psi_{k}\right\rangle\right|^{2} \frac{\sin \left(\lambda-\phi_{k}\right)}{1-\cos \left(\lambda-\phi_{k}\right)}=&0\\ A-B \lambda-C \lambda^{2}=&O\left(\lambda^{3}\right) \end{aligned} where A=2ϕk=00ψk2B=ϕk00ψk2sinϕk1cosϕkC=ϕk00ψk21cosϕk \begin{aligned} A=&2 \sum_{\phi_{k}=0}\left|\left\langle 0 \mid \psi_{k}\right\rangle\right|^{2} \\ B=&\sum_{\phi_{k} \neq 0} \frac{\left|\left\langle 0 \mid \psi_{k}\right\rangle\right|^{2} \sin \phi_{k}}{1-\cos \phi_{k}} \\ C=&\sum_{\phi_{k} \neq 0} \frac{\left|\left\langle 0 \mid \psi_{k}\right\rangle\right|^{2}}{1-\cos \phi_{k}} \end{aligned} We can find λ\lambda by solving ABλCλ2=O(λ3) A-B \lambda-C \lambda^{2}=O\left(\lambda^{3}\right) Our goal now is to find 0λ\langle 0 \mid \lambda\rangle. Making a sandwich with λ|\lambda\rangle on both sides of I=kψkψkI=\sum_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|, we obtain 1=kψkλ21=\sum_{k}\left|\left\langle\psi_{k} \mid \lambda\right\rangle\right|^{2}. Using ψkλ=20λψk01ei(λϕk)\left\langle\psi_{k} \mid \lambda\right\rangle=\frac{2\langle 0 \mid \lambda\rangle\left\langle\psi_{k} \mid 0\right\rangle}{1- e ^{ i \left(\lambda-\phi_{k}\right)}}, we obtain 10λ2=k40ψk21ei(λϕk)2 \frac{1}{|\langle 0 \mid \lambda\rangle|^{2}}=\sum_{k} \frac{4\left|\left\langle 0 \mid \psi_{k}\right\rangle\right|^{2}}{\mid 1- e ^{\left. i \left(\lambda-\phi_{k}\right)\right|^{2}}} Without loss of generality, we may assume that 0λ\langle 0 \mid \lambda\rangle is a positive real number. In fact, if 0λ=aeib\langle 0 \mid \lambda\rangle=a e ^{ i b}, where aa and bb are real numbers and aa is positive, we redefine λ|\lambda\rangle as e1bλe ^{-1 b}|\lambda\rangle. We are allowed to do this redefinition because a multiple of an eigenvector is also an eigenvector and in this case the norm of the eigenvector does not change. After this redefinition and using that 1eia2=2(1cosa)\left|1- e ^{ i a}\right|^{2}=2(1-\cos a), we obtain 0λ=λ2A+Cλ2+O(λ) \langle 0 \mid \lambda\rangle=\frac{|\lambda|}{\sqrt{2} \sqrt{A+C \lambda^{2}}}+O(\lambda) Our goal now is to find λψ(0)\langle\lambda \mid \psi(0)\rangle. We choose ψ(0)|\psi(0)\rangle as an eigenvector of UU with eigenvalue 1.31 .^{3} In this case, ψkλ=20λψk01ei(λϕk)\left\langle\psi_{k} \mid \lambda\right\rangle=\frac{2\langle 0 \mid \lambda\rangle\left\langle\psi_{k} \mid 0\right\rangle}{1- e ^{ i \left(\lambda-\phi_{k}\right)}} we can replace in ψk\left|\psi_{k}\right\rangle by ψ(0)|\psi(0)\rangle and ϕk\phi_{k} by 0 to obtain ψ(0)λ=20λψ(0)01eiλ \langle\psi(0) \mid \lambda\rangle=\frac{2\langle 0 \mid \lambda\rangle\langle\psi(0) \mid 0\rangle}{1- e ^{ i \lambda}} Using 2/(1eiλ)=1+isinλ/(1cosλ)2 /\left(1- e ^{ i \lambda}\right)=1+ i \sin \lambda /(1-\cos \lambda), we obtain ψ(0)λ=ψ(0)00λ(1+isinλ1cosλ) \langle\psi(0) \mid \lambda\rangle=\langle\psi(0) \mid 0\rangle\langle 0 \mid \lambda\rangle\left(1+\frac{i \sin \lambda}{1-\cos \lambda}\right)

Case B=0B=0

If the eigenvalues of UU come in complex-conjugate pairs, that is, both eiϕke ^{ i \phi_{k}} and eiϕke ^{- i \phi_{k}} are eigenvalues, and the corresponding values of 0ψk\left|\left\langle 0 \mid \psi_{k}\right\rangle\right| are equal, for instance, when the eigenvector associated with eiϕke ^{- i \phi_{k}} is the complex conjugate of the eigenvector associated with eiϕk,Be ^{ i \phi_{k}}, B is zero

When B=0B=0, Eq. ABλCλ2=O(λ3)A-B \lambda-C \lambda^{2}=O\left(\lambda^{3}\right) reduces to λ=λ=AC \lambda=-\lambda^{\prime}=\frac{\sqrt{A}}{\sqrt{C}} Equation 0λ=λ2A+Cλ2+O(λ)\langle 0 \mid \lambda\rangle=\frac{|\lambda|}{\sqrt{2} \sqrt{A+C \lambda^{2}}}+O(\lambda) reduces to 0λ=0λ=12C \langle 0 \mid \lambda\rangle=\left\langle 0 \mid \lambda^{\prime}\right\rangle=\frac{1}{2 \sqrt{C}} and Eq. ψ(0)λ=ψ(0)00λ(1+isinλ1cosλ)\langle\psi(0) \mid \lambda\rangle=\langle\psi(0) \mid 0\rangle\langle 0 \mid \lambda\rangle\left(1+\frac{i \sin \lambda}{1-\cos \lambda}\right) reduces to ψ(0)λ=λψ(0)=ψ(0)0(12C+iA). \langle\psi(0) \mid \lambda\rangle=\left\langle\lambda^{\prime} \mid \psi(0)\right\rangle=\langle\psi(0) \mid 0\rangle\left(\frac{1}{2 \sqrt{C}}+\frac{ i }{\sqrt{A}}\right) . Substituting those results into p(t)=eiλt0λλψ(0)+eiλt0λλψ(0)+ϵ2=0ψ(0)2ACsin2λt \begin{aligned} p(t)=&\left| e ^{ i \lambda t}\langle 0 \mid \lambda\rangle\langle\lambda \mid \psi(0)\rangle+ e ^{ i \lambda^{\prime} t}\left\langle 0 \mid \lambda^{\prime}\right\rangle\left\langle\lambda^{\prime} \mid \psi(0)\right\rangle+\epsilon\right|^{2}\\ =&\frac{|\langle 0 \mid \psi(0)\rangle|^{2}}{A C} \sin ^{2} \lambda t \end{aligned} The running time is the optimal tt, which is topt=π2λ t_{ opt }=\left\lfloor\frac{\pi}{2 \lambda}\right\rfloor and the asymptotic success probability is psucc =0ψ(0)2AC p_{\text {succ }}=\frac{|\langle 0 \mid \psi(0)\rangle|^{2}}{A C} An important case is when ψ(0)|\psi(0)\rangle is the diagonal state and the only (modulo a multiplicative constant) (+1)(+1)-eigenvector of UU that has nonzero overlap with 0|0\rangle. In this case, A=20ψ(0)2=2/NA=2|\langle 0 \mid \psi(0)\rangle|^{2}=2 / N and the running time is topt=πNC22 t_{ opt }=\left\lfloor\frac{\pi \sqrt{N C}}{2 \sqrt{2}}\right\rfloor and the success probability is psucc =12C p_{\text {succ }}=\frac{1}{2 C} In this case, the complexity of the algorithm is determined by CC. For the twodimensional lattice, C=O(lnN)C=O(\ln N). The running time is O(NlnN)O(\sqrt{N \ln N}) and the success probability is O(1/lnN)O(1 / \ln N). The best scenario we can hope for is C=O(1)C=O(1), which achieves the Grover lower bound, that is, the running time is topt =O(N)t_{\text {opt }}=O(\sqrt{N}) with constant success probability.

3.3. example 2D lattice

in the N×N\sqrt{N} \times \sqrt{N} square lattice with periodic boundary conditions. The evolution operator of a coined quantum walk with no marked vertex is U=S(GI) U=S(G \otimes I) where GG is the Grover coin and SS is the flip-flop shift operator. The details are described in Sect. 6.26.2 on p. 98 .

A search algorithm on the lattice is driven by the modified evolution operator U=UR U^{\prime}=U R^{\prime} where R=I200 R^{\prime}=I-2\left|0^{\prime}\right\rangle\left\langle 0^{\prime}\right| with 0=DC0,0 \left|0^{\prime}\right\rangle=\left| D _{C}\right\rangle|0,0\rangle where DC\left| D _{C}\right\rangle is the diagonal state of the coined space and DP\left| D _{P}\right\rangle is the diagonal state of the position space. This state can be generated by O(N)O(\sqrt{N}) steps

We list the eigenvectors that have nonzero overlap with 0\left|0^{\prime}\right\rangle. The only eigenvector with eigenvalue 1 is ν0,01a0~,0~ \left|\nu_{0,0}^{1 a}\right\rangle|\tilde{0}, \tilde{0}\rangle which is equal to the initial condition ψ(0)|\psi(0)\rangle. The remaining eigenvectors are νk±θk~,~\left|\nu_{k \ell}^{\pm \theta}\right\rangle|\tilde{k}, \tilde{\ell}\rangle for 0k,l<N0 \leq k, l<\sqrt{N} and (k,l)(0,0)(k, l) \neq(0,0), where νk±θ=i22sinθk[eFiθkωkeiθkωkeFiθkωeFiθkω] \left|\nu_{k \ell}^{\pm \theta}\right\rangle=\frac{ i }{2 \sqrt{2} \sin \theta_{k \ell}}\left[\begin{array}{l} e ^{ Fi \theta_{k \ell}}-\omega^{k} \\ e ^{\mp i \theta_{k \ell}}-\omega^{-k} \\ e ^{ Fi \theta_{k \ell}}-\omega^{\ell} \\ e ^{ Fi \theta_{k \ell}}-\omega^{-\ell} \end{array}\right] which have eigenvalues e±iθke ^{\pm i \theta_{k \ell}}, where θk\theta_{k \ell} are given by cosθk=12(cos2πkN+cos2πN) \cos \theta_{k \ell}=\frac{1}{2}\left(\cos \frac{2 \pi k}{\sqrt{N}}+\cos \frac{2 \pi \ell}{\sqrt{N}}\right) and ω=e2πiN\omega= e ^{\frac{2 \pi i}{\sqrt{N}}}.

Vector k~,~|\tilde{k}, \tilde{\ell}\rangle is the Fourier transform given by Eq. k~,~=1Nx,y=0N1ωxk+yx,y|\tilde{k}, \tilde{\ell}\rangle=\frac{1}{\sqrt{N}} \sum_{x, y=0}^{\sqrt{N}-1} \omega^{x k+y \ell}|x, y\rangle. Note that the eigenvalues and eigenvectors of UU come in complex-conjugate pairs, Note that the eigenvalues and eigenvectors of UU come in complex-conjugate pairs, two-dimensional lattice, ϕkθk,ψkνk±θk,~,kk\phi_{k} \rightarrow \theta_{k \ell},\left|\psi_{k}\right\rangle \rightarrow\left|\nu_{k \ell}^{\pm \theta}\right\rangle|{k}, \tilde{\ell}\rangle, \sum_{k} \rightarrow \sum_{k \ell}, and using that 0=DC0,0\left\langle 0^{\prime}\right|=\left\langle D _{C}\right|\langle 0,0|, we obtain A=2N,B=0,C=1Nk,=0(k,)(0,0)N11112(cos2πkN+cos2πN)=clnN+O(1) \begin{aligned} A=&\frac{2}{N}, \\ B=&0, \\ C=&\frac{1}{N} \sum_{k, \ell=0 \atop(k, \ell) \neq(0,0)}^{\sqrt{N}-1} \frac{1}{1-\frac{1}{2}\left(\cos \frac{2 \pi k}{\sqrt{N}}+\cos \frac{2 \pi \ell}{\sqrt{N}}\right)} \\ =&c \ln N+O(1) \end{aligned} where cc is a number bounded by 2/π2c12 / \pi^{2} \leq c \leq 1. Numerical calculations show that c=0.33c=0.33 approximately. Since B=0B=0, the probability of finding the marked vertex as a function of the number of steps is given by Eq. p(t)=0ψ(0)2ACsin2λtp(t)=\frac{|\langle 0 \mid \psi(0)\rangle|^{2}}{A C} \sin ^{2} \lambda t. For the two-dimensional square lattice with odd N\sqrt{N},
p(t)=12clnNsin2(2tcNlnN). p(t)=\frac{1}{2 c \ln N} \sin ^{2}\left(\frac{\sqrt{2} t}{\sqrt{c} \sqrt{N \ln N}}\right) . The running time is topt=πcNlnN22 t_{ opt }=\left\lfloor\frac{\pi \sqrt{c} \sqrt{N \ln N}}{2 \sqrt{2}}\right\rfloor and the success probability is psucc =12clnN+O(N1). p_{\text {succ }}=\frac{1}{2 c \ln N}+O\left(N^{-1}\right) .

  1. Note that the running time is good enough because it is the square root of the classical hitting time.
  2. On the other hand, the success probability seems disappointing because it tends to zero when NN increases. Since it goes to zero logarithmically in terms of NN, the situation is not too bad and can be saved.

results matching ""

    No results matching ""